Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management
نویسندگان
چکیده
Mobile-edge computation offloading (MECO) is an emerging technology for enhancing mobiles’ computation capabilities and prolonging their battery lives, by offloading intensive computation from mobiles to nearby servers such as base stations. In this paper, we study the energy-efficient resourcemanagement policy for the asynchronous MECO system, where the mobiles have heterogeneous inputdata arrival time instants and computation deadlines. First, we consider the general case with arbitrary arrival-deadline orders. Based on the monomial energy-consumption model for data transmission, an optimization problem is formulated to minimize the total mobile-energy consumption under the timesharing and computation-deadline constraints. The optimal resource-management policy for data partitioning (for offloading and local computing) and time division (for transmissions) is shown to be computed by using the block coordinate decent method. To gain further insights, we study the optimal resource-management design for two special cases. First, consider the case of identical arrival-deadline orders, i.e., a mobile with input data arriving earlier also needs to complete computation earlier. The optimization problem is reduced to two sequential problems corresponding to the optimal scheduling order and joint data-partitioning and time-division given the optimal order. It is found that the optimal time-division policy tends to balance the defined effective computing power among offloading mobiles via time sharing. Furthermore, this solution approach is extended to the case of reverse arrival-deadline orders. The corresponding time-division policy is derived by a proposed transformation-and-scheduling approach, which first determines the total offloading duration and data size for each mobile in the transformation phase and then specifies the offloading intervals for each mobile in the scheduling phase.
منابع مشابه
Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning
Due to the ever-increasing popularity of resourcehungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they...
متن کاملEfficient Radio Resource Management for Wireless Cellular Networks with Mobile Edge Computing
Mobile edge computing (MEC) has attracted great interests as a promising approach to augment computational capabilities of mobile devices. An important issue in the MEC paradigm is computation offloading. In this paper, we propose an integrated framework for computation offloading and interference management in wireless cellular networks with mobile edge computing. In this integrated framework,...
متن کاملLatency Optimization for Resource Allocation in Mobile-Edge Computation Offloading
By offloading intensive computation tasks to the edge cloud located at the cellular base stations, mobile-edge computation offloading (MECO) has been regarded as a promising means to accomplish the ambitious millisecond-scale end-to-end latency requirement of the fifth-generation networks. In this paper, we investigate the latency-minimization problem in a multi-user time-division multiple acce...
متن کاملENGINE: Cost Effective Offloading in Mobile Edge Computing with Fog-Cloud Cooperation
Mobile Edge Computing (MEC) as an emerging paradigm utilizing cloudlet or fog nodes to extend remote cloud computing to the edge of the network, is foreseen as a key technology towards next generation wireless networks. By offloading computation intensive tasks from resource constrained mobile devices to fog nodes or the remote cloud, the energy of mobile devices can be saved and the computatio...
متن کاملComputation Offloading and Activation of Mobile Edge Computing Servers: A Minority Game
With the ever-increasing popularity of resourceintensive mobile applications, Mobile Edge Computing (MEC), e.g., offloading computationally expensive tasks to the cellular edge, has become a prominent technology for the next generation wireless networks. Despite its great performance in terms of delay and energy, MEC suffers from restricted power allowance and computational capability of the ed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.03668 شماره
صفحات -
تاریخ انتشار 2018